

Analog Optical Signal Processing (AOSP)

Addressing Need for Maintaining Our National Position:

- Spectral dominance, global awareness & rapid response

Simultaneous Multi-Mission

Self Queuing/Modality Shift Merging ESM & RWR

LPD Waveform Detection LPD/LPI Waveforms Active ECM Signature Control Incr. Prob. Of Intercept Incr. Sensitivity/BW Incr. Dynamic Range

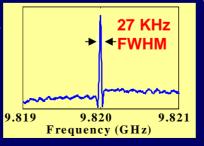
Enabling Network Centric Operations via RF Photonics

· Goal:

 Demonstrate Analog Optical Signal Processing Components and Modules that extend Dynamic Range-Bandwidth and Time-Bandwidth limits on RF antenna systems by 1000x

- Instantaneous Bandwidth (IBW): $1 \text{ GHz} \rightarrow 100 \text{ GHz}$

Time Aperture (TA): 10 ms \rightarrow 1 ms


– Dvnamic Range (SFDR): 110 dB-Hz $^{2/3} \rightarrow 120$ dB-Hz $^{2/3}$

Technical Challenges:

- RF Performance
 - Linearity (SFDR)
 - Sensitivity (Noise Figure)
- Hybrid Chip-Scale Integration
 - Insertion loss
 - On-chip time delay
 - Fast material response times
 - New device/integration approaches

Fast Readout of Captured Spectrum with Time*Bandwidth ~ 400,000

- 27 kHz Resolution
- Readout of spectrum near 10GHz
- Scan rate of 0.1GHz/ms is 100x faster than conventional limit for resolution of 27 kHz

Impact

- Simultaneous Multifunction Payloads: GMTI, AMTI, High Resolution SAR, Electronic Warfare, Signals Intelligence
- Multi-Static Operations: Resolve difficult targets & tracks
- Dynamic Reconfiguration: Ad hoc networking for fully integrated tasking, processing, exploitation & dissemination
- Alleviates RF front-end performance limitations enabling full use of emerging EW receiver and ADC technologies

Thrusts

- RF Channelizer, RF Spectrum Analyzer, Agile RF Filte **Arbitrary Waveform Generator**